Convergence properties of optimal transport-based temporal networks
2021
Conference Paper
pio
We study network properties of networks evolving in time based on optimal transport principles. These evolve from a structure covering uniformly a continuous space towards an optimal design in terms of optimal transport theory. At convergence, the networks should optimize the way resources are transported through it. As the network structure shapes in time towards optimality, its topological properties also change with it. The question is how do these change as we reach optimality. We study the behavior of various network properties on a number of network sequences evolving towards optimal design and find that the transport cost function converges earlier than network properties and that these monotonically decrease. This suggests a mechanism for designing optimal networks by compressing dense structures. We find a similar behavior in networks extracted from real images of the networks designed by the body shape of a slime mold evolving in time.
Author(s): | Baptista Theuerkauf, Diego and De Bacco, Caterina |
Book Title: | Complex Networks & Their Applications X |
Volume: | 1 |
Year: | 2021 |
Month: | September |
Series: | Studies in Computational Intelligence |
Department(s): | Physics for Inference and Optimization |
Bibtex Type: | Conference Paper (conference) |
DOI: | 10.1007/978-3-030-93409-5_48 |
Event Name: | 10th International Conference on Complex Networks and Their Applications (COMPLEX NETWORKS 2021) |
Event Place: | Madrid |
ISBN: | 978-3-030-93408-8 |
State: | Published |
Links: |
Preprint
|
BibTex @conference{convOT, title = {Convergence properties of optimal transport-based temporal networks}, author = {Baptista Theuerkauf, Diego and De Bacco, Caterina}, booktitle = {Complex Networks & Their Applications X }, volume = {1}, series = {Studies in Computational Intelligence }, month = sep, year = {2021}, doi = {10.1007/978-3-030-93409-5_48}, month_numeric = {9} } |